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Abstract 

The probability distributions of the N - H . . . O = C  and 
O - H . . . O = C  hydrogen-bond lengths observed in the 
crystal structures of the purines, pyrimidines, nucleo- 
sides and nucleotides have been fitted to a one- 
dimensional hydrogen-bond potential-energy function. 
In order to obtain a quantitative correspondence 
between the experimental and theoretical distributions, 
it is necessary to include with the usual hydrogen- 
bond-type potential-energy function, an effective 
crystal-packing force and two thermodynamical param- 
eters of the crystal lattice, the Debye temperature and 
the Gruneisen constant. 

Introduction 

The statistical analysis of results of crystal structure 
determinations has had some notable successes. Exam- 
ples are the exploration of the permitted regions of 
polypeptide chain conformations by Ramachandran & 
Sasisekharan (1968) and the determination of the 
permitted ring conformations and glycosidic torsion 
angles in the components of the nucleic acids by Altona 
& Sundaralingam (1972). Over the past five years, a 
number of statistical studies have been made of the 
hydrogen-bond geometry observed in the crystal 
structures of small biological molecules. These studies 
have been made possible by access to crystal structural 
data through the computer-readable Cambridge Struc- 
tural Database (Allen, Kennard & Taylor, 1983). 

Taylor, Kennard & Versichel (1983, 1984a,b) 
studied the geometry of 1509 N - H . . . O = C  and 
N + - H . . . O - - C  bonds in a variety of compounds. 

*On leave from Department of Biophysics, University of 
Warsaw, Zwirki i Wigury 93, Poland. 
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Ceccarelli, Jeffrey & Taylor (1981) examined the 
O - H . . . O  bonds in the pyranose and pyranoside sugars 
using neutron diffraction data. A similar study was 
made by Jeffrey & Maluszynska (1982) of neutron 
diffraction analyses of amino acids. The analyses have 
been extended to the small-molecule components of 
nucleic acids, nucleosides and nucleotides, and purines 
and pyrimidines by Jeffrey, Maluszynska & Mitra 
(1985) and Jeffrey & Maluszynska (1986). The 
following general observations were made from these 
studies. 

(i) Hydrogen-bond lengths are group-pair properties, 
rather than atom-pair properties. Based on the ob- 
served hydrogen-bond lengths, acceptor and donor 
groups can be ordered according to the strengths of the 
hydrogen bonds that they form (Taylor, Kennard & 
Versichel, 1984b). In the nucleosides and nucleotides, 
for example, the hydrogen-bond strengths of the donor 
groups are P - O H  > C - O H  > ) N H  > OwH > 
N(H)H, whereas for the acceptor groups, they are 
O=P > OrvH2 > O=C > O(H)C > N/~ / > O~ (Jef- 
frey, Maluszynska & Mitra, 1985). 

(ii) For any particular group pair, the observed 
hydrogen-bond lengths, i.e.H...A, have a distribution 
which is qualitatively 'an inverse' of a Morse type of 
hydrogen-bond potential-energy curve, i.e., Pexp vs Vhb 
in Fig. 1. 

In this paper, we seek to obtain a relationship 
between the bond-length probability distribution, Pexp, 
and an effective potential-energy relationship for the 
two-centered~" N - H . . . O = C  and O- -H. . .O=C hydro- 
gen bonds observed in the crystal structures of the 

"t" A two-centered hydrogen bond is defined as a configuration in 
which there is only one electronegative acceptor atom within 3.0 A 
from the H atom in the forward direction with respect to the 
covalent X-H bond, i.e., with D-H...A > 90 °. 

© 1988 International Union of Crystallography 



194 H-BOND-LENGTH PROBABILITY DISTRIBUTIONS 

small-molecule components of the nucleic acids, i.e. the 
purines, pyrimidines, nucleosides and nucleotides. We 
will show that the effective potential-energy curve which 
can reproduce the experimental hydrogen-bond-length 
distribution must be different from the Morse-type V,b 
curve shown in Fig. 1. To reproduce the experimental 
distributions, additional terms are necessary to take into 
account the other intra- and intermolecular forces and 
the thermal motion of the atoms in the crystal. Such 
terms are specific to each crystal structure. Some 
hydrogen bonds may be compressed, while others are 
expanded with respect to the equilibrium lengths for a 
particular isolated hydrogen-bond donor/acceptor pair. 
A remarkable example of this is observed in the crystal 
structure of D-glucitol, where the O - H . . . O - H  bonds 
form two infinite chains. In one the hydrogen-bond 
lengths are significantly shorter than average, 1.691 to 
1.729 A, while in the other they are longer, 1.914 to 
2.218 A (Park, Jeffrey & Hamilton, 1971). 

In the distribution, Pexp, shown in Fig. 1, the averaged 
effect of many different, but related, crystal structures is 
observed. As we will show later, this averaged crystal 
field has an overall compression effect, such that the 
experimental distribution curves are compressed at 
distances longer than the most probable value, when 
compared with theoretical distributions obtained with- 
out taking into account the other forces in the crystal 
lattice and the thermal motion. The maxima of the 
bond-length distribution curves are also at different 
values than the minima of the hydrogen-bond atom-pair 
potential functions.* 

*The suggestion that hydrogen-bond lengths in molecular 
crystals would be shortened owing to compression from the 
long-range attractive forces was made by Pedersen (1974). 
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Fig. 1. Qualitative relationship between the hydrogen-bond-length 
distribution in the crystal state (a), and (b) the hydrogen-bond 
potential. 

Experimental data 

The experimental distribution curves for the N--H-. .  
O=C and O - H . . . O - C  hydrogen-bond lengths were 
those reported in the survey of hydrogen bonds in the 
crystal structures of the nucleosides and nucleotides 
(Jeffrey, Maluszynska & Mitra, 1985) and barbit- 
urates, purines and pyrimidines (Jeffrey & 
Maluszynska, 1986). This survey was based on the 
1985 issue of the Cambridge Database. It would have 
been preferable to use only neutron diffraction data, 
since these have a smaller component of spread due to 
experimental errors, but there are insufficient neutron 
diffraction crystal structure analyses available for this 
class of compound. 

In order to combine X-ray and neutron data and to 
reduce the X-ray bond-shortening errors, the covalent 
O - H  and N - H  bond lengths from the X-ray analyses 
were normalized to the standard internuclear distances 
of N - H = 1 . 0 3  and O - H = 0 . 9 7 A  (Jeffrey & 
Lewis, 1978; Taylor & Kennard, 1983). The experi- 
mental distributions, which contained 151 C = O . . . H N  
bonds and 47 C--O. . .HO bonds, were normalized to 
unity at the maximum. 

Theoretical model 

The model for the experimental system is an idealized 
ensemble of two-center hydrogen bonds located in an 
isotropic crystalline lattice. We assume that the 
hydrogen-bond-length distributions, p(r,T), are deter- 
mined by the Helmholtz free-energy function, A, which 
depends on the distance between the donor and the 
acceptor group, r, and on the temperature, T: 

where 

and 

p(r, T) = exp [-AA (r,T)lkT] (1) 

AA (r,T) -- A (r,T) i A (rmin, T) (2) 

A ( r , T ) =  Vefr(r,T ) -- TS(r ,T) .  (3) 

Vef r is an effective interatomic potential between the 
interacting groups, and r min is the distance at which the 
free energy attains its minimum. 

In our first attempt to reproduce the experimental 
distribution, we used for AA(r,T), the (6-12) Lennard- 
Jones-type hydrogen-bond potential function, A Vhb, of 
Lifson, Hagler & Dauber (1979) and Dauber & Hagler 
(1980): 

acceptor donor qAqo 
v.b= Y Y 

A D lAD 

,,,o,6 
+ ~ . . / - 2 f - - /  + - -  . ( 4 )  

L t r a p /  \rA~ I d 

This function is known to give reasonable hydrogen- 
bond energies when appropriately parameterized for the 
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Table 1. Initial and optimized hydrogen-bond potential- 
energy-function parameters 

The charges have been fixed at their initial values (Lifson, Hagler & 
Dauber, 1979; Dauber & Hagler, 1980): qoketo=--0.38, qc(oketol 
=0"38, qOhydro~y=--0.38, qn(Ohydroxy) =0"35, qN=--0"28, q.(N) 
= 0"28. Note the unrealistic values of the optimized e parameters, 
obtained from fitting the theoretical to the experimental distribution 
(Figs. 2a,b), excluding thermodynamical lattice parameters. 

Oketo'"N Oketo" • • Ohydroxy C. . .N  C .  • .Ohydroxy 
r* (A) Initial 3.57 3-21 4.14 3.78 

Optimized 2.98 2.84 4.07 2.86 
e. (kcal mol q't" Initial -0.195 -0.228 -0.081 -0.094 

Optimized -3.2 -14.8 -26.0 -27.5 

t" I kcal mol -~ = 4.187 kJ mol -~. 

partial charges on the acceptor and donor atoms, qo 
and qA, the Lennard-Jones constant eAo and the 
equilibrium distance r* A (i.e. r* N and r~o for these 
bonds). 

Using the initial parameters given in Table 1 for the 
N - H . . . O = C  and O - H . . . O = C  bonds, the theoretical 
bond-length distributions, Ptheo, gave a very poor fit to 
the experimental results. The most important feature of 
this misfit was that the experimental distributions were 
much narrower and somewhat more symmetrical, as 
shown in Figs. 2(a,b). A non-linear regression method 
BMDP (.Dixon, 1985) was used to optimize the values 

,0 
1.0 
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0.4 

0.2 ̧  

Popt " ~  / 

1131141151.61.7 .81.9 2.0 2.12.22.32.42.52.6 2.7 
(a) r(O...H-N) (A) 

of eoA and rgA in (4) to obtain the better fits shown by 
/)opt in Figs. 2(a,b). The weighted residual sum of 

i 2 squa res  ~.lWlQgexo--Ptheo) was minimized using the 
pseudo-Gauss-Newton algorithm (Dixon, 1985) with 
the weights w I = (pixp) 1/2. In this way more-populated 
regions of the experimental distribution contribute 
preferentially to the shape of the analytical function. 
The residual sum of squares was 0.02 and 0.16 for the 
N - H . . . O = C  and O - H . . . O = C  bonds, respectively. 
The initial and optimized parameters are given in Table 
1. These are dimensionless quantities because the 
experimental distributions were normalized. Even 
though the Lennard-Jones parameters in (4) could be 
adjusted to make the maxima coincide and induce a 
better fit in the shape of the distribution curves, the 
required values of the e parameters were highly 
unrealistic. The depth of the Lennard-Jones potential 
functions was 1-2 orders of magnitude greater than the 
initial value. 

In order to check this result with another type of 
hydrogen-bond potential function, a bond-length dis- 
tribution was calculated using the hydrogen-bond 
potential derived from the ab-initio molecular orbital 
calculation for the water dimer by Singh & Kollman 
(1985), and compared with the OwH.. .O w bond 
distribution reported from neutron diffraction data on 
hydrated crystals by Chiari & Ferraris (1982). This 
gave a similar resultt to that from the semi-empirical 
function, as shown in Fig. 3. 

A more sophisticated model was then derived for the 
effective interaction potential function in (3), which 
would account for a compression on the hydrogen bond 
by the other forces in the crystal lattice and for thermal 
lattice energy and entropy terms. 

~f It is worth noting that the theoretical O.. .O equilibrium 
distance for the hydrogen bond in the isolated water dimer at rest, 
2.95-3.00 A, is longer than the Ow.. .O w distances of ~2.75 A 
observed in the ices and crystalline hydrates, by the same order of 
magnitude as between the maxima ofPthe o and P~xp in Fig. 2(a). 
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Fig. 2. Experimental (Pexp) and theoretical (Ptheo, Popt) hydrogen- 
bond-length distribution. (a) For C = O . . . H - N ,  (b) for 
C = O . . . H - O .  Popt determined with optimization of the (6-12) 
Lennard-Jones potential function. 
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Fig. 3. Theoretical hydrogen-bond-length distribution, Pth¢o, cal- 
culated using the potential-energy function for the linear water 
dimer of Singh & Kollman (1985), with Pexp for Ow-H. . .O  w 
distribution from neutron diffraction data on hydrated crystals 
(Chiari & Ferraris, 1982). 
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This model of a hydrogen bond in an isotropic 
crystal lattice is illustrated in Fig. 4. The effect of the 
crystal forces on the hydrogen bond is described by 
three constants: a mean compression force, f, the 
Debye temperature, O, and the Gruneisen constant, y. 
The physical interpretation of the last two constants is 
described by Meyer (1975), Tabor (1980) and Mc- 
Quarrie (1973). 

The function A(r,T) in (3) is then given by 

A(r,T)= Vhb(r) + Vcomp(r) + Evib(r,T )- TS~ib(r,T) (5) 

where the first three terms correspond to Vefr in (3). 

Vhb(r) iS calculated, as before, using (4). Vcomp(r) is the 
simple compression potential: 

Vcomp(r) : f ( r - - r ~ d  n) (6) 

where f is a constant representing the mean com- 
pression force of the crystal lattice and r#d" is the 
equilibrium hydrogen-bond distance H.. .  O in Vhb(r). 

Evib(r,T)- TSvib(r,T) is the vibrational free energy 
A~b(r,T). (It is assumed that the total entropy can be 
approximated by the vibrational entropy.) 

Within the limits of the Debye heat-capacity theory: 

A vib(r,T) ~ ~RO+ 3RT{ln[1--exp(-O/T)]--~-D(O/T)} (7) 

where D is the Debye function, and O is the Debye 
temperature for the hydrogen-bond ensemble in the 
crystal lattice: 

00/T D(O/T)= [3 / (0 /7)  3] [x3/exp(x)--l] dr. (8) 

In this form, A~ib(r,T) is not a function of a 
hydrogen-bond length, r. It has been shown, however 
(see McQuarrie, 1973), that normal-mode vibrational 
frequencies, vj, of atoms near their equilibrium posi- 
tions are a function of the density or volume, V, of the 
system, and satisfy the relationship: 

Olnvj/OlnV= -~ (9) 

where 7 is the Gruneisen constant. We assume that the 
same functional dependence describes the Debye 
frequency, VD = kO/h. 

Under these circumstances, in the one-dimensional 
case shown in Fig. 4, the following dependence of the 

f 
f b C A" -'H . . . . . . . . . . . . . . . . .  D 

I r ' 

r,e,7 
Fig. 4. One-dimensional model of the hydrogen bond in the solid 

state, perturbed by the compression forcer .,I and D denote the 
acceptor and donor atoms, respectively. The temperature, T, the 
Debye temperature, O, and the Gruneisen constant, T, are the 
macroscopic thermodynamical parameters of the ensemble. In 
this study, C-A is C=O = !.22 A, D-H is O-H = 0.97 A and 
N-H = 1.03 A. 

Debye temperature on the hydrogen-bond length is 
satisfied (see Appendix): 

r-r, n /,) 
0 Omi, (10) 

1--Yr~ln+ rc~ + r o 

where O mi" is a reference Debye temperature in the 
hydrogen-bond energy minimum. 

Substituting equation (10) into (7), we obtain 
Avib(r,T), and this allows us to determine the total 
free-energy function A(r,T) (5) and consequently the 
probability distribution function p(r,T) (1). 

This probability distribution function contains too 
many parameters for an unconstrained optimization 
against the available experimental data. Therefore, we 
fixed the partial charges (q's) and the Lennard-Jones 
potential depths (e's) at the realistic initial values given 
in Table 1. The other parameters (r's, f, O mi" and y) 
were optimized with the aid of the non-linear regression 
procedure used previously. 

As shown in Fig. 5, a close correspondence with the 
experimental bond-length distributions was obtained 
using the optimized parameters given in Table 2. The 
final residual sum of the squares was 0.016 and 0.139 
for the N - H . . . O - C  and O - H . . . O = C  bonds, 
respectively. 

Discussion 

The contraction of the theoretical bond-length distribu- 
tion at the larger values of r necessary to fit the 
experimental data is obtained by an increase of the r* N 
and ~oo equilibrium distances by about 0.4 and 0.5/~ 
from the initial values. This can be interpreted as an 
increase in the effective van der Waals radii of the 
atoms adjacent to the H atom of the hydrogen bond. 
The ~N and r* o parameters are even larger than the 
initial values, by 1.3 and 1.5 ,/k respectively, but these 

0.2 

4-- Pthoo ~ Ptheo 

I 

L .r-z .~- i . 1-1. [-I. 
1.6 1.7 t.8 1.9 2.0 2.1 2.2 2 3 1,6 1 7 1.8 1,9 2.0 2 1 2.2 2.3 214 215 2.6 

r(O...H-N) r(O...H-O) (A) 
(a) (b) 

Fig. 5. Experimental (Pexp) and theoretical (fltheo) hydrogen-bond- 
length distributions. Ptheo is obtained with optimization of the 
free-energy parameters. (a) For C=O...H-N, (b) for 
C=O...H-O. Number of experimental data are 151 and 47 for 
(a) and (b), respectively. 
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Table 2. Optimized parameters used to obtain Popt in 
Fig. 5 

(a) Optimized equilibrium distances in the Lennard-Jones inter- 
action potential functions. The e parameters and the charges were 
fixed at their initial values (see Table 1). Standard deviations are 
given in parentheses. 

Oketo"" .N Oketo"" "Ohydroxy C'" "N C.." Ohydroxy 
rA* o (A) 3.90 (0.41) 3.73 (0.25) 5.49 (3.96) 5.32 (1.47) 

(b) Optimized thermodynamical crystal-state parameters, f is the 
mean crystal compression force; k O  rain is the Debye temperature in 
the hydrogen-bond energy minimum multiplied by the Boltzman 
constant; y is the Gruneisen constant. Standard deviations are given 
in parentheses. 

C = O . . . H - N  C = O . . . H - O  
F (kcal mol-' A -t) 29-8 (15.4) 30.3 (5.3) 
kO mr" (kcal mol -I) 0.50 (0.25) 0.52 (0.27) 
y 0.98 (0.87) 1.00 (0.33) 

changes are not significant in relation to the standard 
deviations (see Table 2a,b). The experimental distribu- 
tions do not provide any reliable information relating to 
these second-neighbour parameters, since the inter- 
actions between these more remote atom pairs con- 
tribute much less to the potential energy and have little 
effect on the shape of the hydrogen-bond-length 
distributions. 

This result is consistent with the observation by 
Savage & Finney (1986) and Savage (1986) that the 
hydrogen-bonding patterns of the water structure in the 
crystals of macromolecules can be more readily 
interpreted by concentrating on the repulsion charac- 
teristic of the O atoms in order to define the excluded 
regions of configurational space.* In this study the 
effective van der Waals radii of the O atoms had also to 
be increased by about 0.2-0-3 A beyond the tradi- 
tionally accepted values. 

The optimized values for the mean compression 
forces, f ,  are close to 30 kcal mol -t  A-k  This corre- 
sponds to reasonable values of 3 to 6 kcal mol -~ for the 
distortions of 0.1 to 0 . 2 A  from the most stable 
configurations in the vapour state. It would be more 
realistic to use a distribution function to describe a 
dispersion of the crystal-packing forces and to include 
nonlinearity of the hydrogen bonds in the statistical 
analysis. The latter correction would probably result in 
a decrease of the compression-force dispersion. How- 
ever, this would require additional optimizations and 
the present experimental data do not justify this 
additional complexity. 

The model correctly predicts the order of magnitude 
for the Debye temperature. The optimal kO min param- 
eter is equal to about 0.5 kcal mo1-1 (Table 2). This is a 

* Because the protein and nucleic acid crystals contain such a 
large proportion of 'unbound' water, it is debatable which hydrogen 
bonds should be regarded as being in a crystal lattice and which 
could be adequately represented by a liquid-phase potential-energy 
curve. 

reasonable value when compared with k T  = 0.582 kcal 
mo1-1. 

The Gruneisen constants are close to 1.0 (Table 2) 
with large standard deviations, 0.87 and 0.33 for the 
C = O . . . H - N  and C = O . . . H - O  hydrogen-bond sys- 
tems, respectively. The Gruneisen constant cannot be 
well refined using the present set of data. This constant 
mainly determines the temperature-dependent proper- 
ties of the solids (e.g. thermal expansion coefficient), 
whereas our experimental distributions are based 
almost entirely on the room-temperature X-ray and 
neutron data. When more precise temperature-depen- 
dent neutron diffraction data become available, this 
aspect of the model could be examined more critically. 

This work was supported by the National Institutes 
of Health, grant No. GM-24526. BL wishes to 
acknowledge travel support from the Ministry of 
Science, Higher Education and Technology (Poland) 
within the project CPBP 01.06. 

APPENDIX 

Normal frequencies of vibration of the atoms near their 
equilibrium position are a function of volume, V, and 
satisfy the following relation [see McQuarrie (1973)]: 

c31n vj/pln V = -7 .  (.4 1) 

We assume that the same relation describes the Debye 
frequency, YD. In addition, in the one-dimensional case, 
the distance rco between the most separated heavy 
atoms in the hydrogen bridge (see Fig. 4) plays a role of 
volume. This leads to the relation: 

c01n VD/c01n rcD= --),. (A 2) 

For small displacements, Ar, from the vapour-state 
equilibrium position, r ~  n, the relation (A2) takes the 
form: 

( AVDI ~1")1 ( Arlrco) = - y (A 3) 

where Ar = r-r~d n and AVD = VD--V~ in. r~, n and vE in 
stand for the vapour-state equilibrium distance and the 
characteristic Debye frequency in this reference state, 
respectively. 

Because rcD = r+rc_A+ro_H, the relation (A3) can be 
written in the form 

p pmin 

vo= v~ ~" 1-~r~"+rc A+rD-H/ " (A4) 

Finally, a similar relation is obtained for the Debye 
temperature O = h%/k ,  

- r r m i n  
- -  hb 

1 9 =  19min ( 1 - - ) '  min ~ .  ( , 4 5 )  
\ rhb +rc_A+ro_n/  

O rain is a reference Debye temperature at the hydro- 
gen-bond energy minimum, in a vapour reference state. 
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The structure and absolute configuration of (+)-biperiden: a ehiral ligand for the pirenzepine binding site. 
Erratum. By PENELOPE W. CODDING, Departments o f  Chemistry and Pharmacology and Therapeutics, University o f  
Calgary, Calgary, Alberta T2N 1N4, Canada 

(Received 26 October 1987) 

Abstract 

According to the IUPAC sequence-rule preferences, the 
absolute configuration of (+)-biperiden at C(1) should be 
assigned (R)-configuration not the (S)-configuration reported 

in the original manuscript [ C odding (1986). A cta Cryst. B 42, 
632-6381. 

All relevant information is given in the Abstract. 
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2,2,4,4-Tetramethyl-l,3-eyelobutanedione. Erratum. By CHARLES D. SHIRR.ELL and DONALD E. WILLIAMS. 
Department o f  Chemistry, University o f  Louisville, Louisville, Kentucky 40208, USA 

(Received 25 November 1987) 

Abstract 

There is a typographical error in the paper by Shirrell & 
Williams [Acta Cryst. (1974), B30, 245-246]. The correct 
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space group is C2/m and all calculations were performed in 
this space group. 

All relevant information is given in the Abstract. 
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